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Abstract

We reveal the techniques underlying actual implementation of the NIST MultiCal® software, an

evolved, automated implementation of the Multiline TRL (Thru-Reflect-Line) calibration
method for vector network analyzers (VNAs). We describe the sequence of events in MultiCal
for the Multiline TRL calibration and show how the program operates more like a state-machine
than a solver of simultaneous equations. Our report details the steps used in estimating the
transmission-line propagation-constant and the VNA correction coefficients.

Introduction

We reveal what is really going on in NIST’s MultiCal® program in performing automated
Multiline TRL (Thru-Reflect-Line) calibrations [1]1. It is written specifically for those readers
already familiar with the Multiline method paper [1] and who desire to learn more. Although the

original paper provides much detail, the actual implementation of the method in the NIST
MultiCal software has not been publicly documented before now. We offer here the key features
of the NIST code, providing important insight beyond the pure mathematics of the problem.

Writing Multiline TRL software logically start with the math, but software authors who are
starting without the benefit of past experience are often confounded by spikes in their S-
parameter sweeps and bothersome discontinuities in their propagation-constant data. This could
understandably lead the author to a potentially erroneous conclusion that MultiCal must not be as
good as other calibrations [3]. We must realize that reducing the Multiline method to practice in
the form of MultiCal required the experience of many users and entailed an evolutionary process.
Since the final code grew out of many fruitful discussions that took place at past ARFTG

conferences, we take the opportunity of the 60th conference to reveal the numerical techniques

                                                  
1 Though  we document the Marks method [1],  we note that the general TRL formulation of B. Bianco et al. [2] also

encompasses the Multiline method.
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and methods of MultiCal in hopes that it can assist other authors of Multiline calibration routines
and sparks additional energetic debate leading to further improvement.

Since we cannot possibly include complete documentation of the code in a conference paper, we
include what is possible and highlight here the key techniques and tests in MultiCal that are not

so obvious. Our paper shows how the choice of using the Gauss-Markov estimator influences the
selection of length difference pairs. We show how MultiCal works with an 8-term model when
the network analyzers measure only three of the four wave variables at the same time, and we
show how the roots of the analytic eigenvalue equations are assigned to the propagation terms
and how the 8-term correction coefficients are estimated.

Various versions of MultiCal and its predecessor, DEEMBED have been distributed. This paper
is specific to MultiCal Version 1.04a, though the principles are common to the more- and less-
evolved versions of the code. The paper will not cover the LRM calibration and other capabilities
of MultiCal.

Key Multiline Principles

The Multiline method utilizes an ensemble of uncorrected two-port S-parameter measurements
collected from a set of calibration artifacts, plus a measurement of the so-called “switch terms”
[4] in order  to compute the two-port VNA correction coefficients. The method defines
transmission-line standards that differ only in length2, and an arbitrary reflection standard that is
considered identical for both port connections. As a key part of this process, Multiline estimates
the propagation-constant of the standards frequency-by-frequency, then computes the S-
parameter correction coefficients in two parts, using the accurate estimate of the propagation-
constant.

In examining MultiCal, we must keep in mind certain features of the Multiline method. First, the
Multiline method is fundamentally an error-box formulation, as shown in Fig. 1a, and does not
use independent forward and reverse sub-models as does the 12-term model as shown in Fig. 1b
[5]. MultiCal handles differences between forward and reverse port match conditions by
determining the switch-terms and correcting for these at the very beginning, and it can also apply
an isolation term correction to the measured data. It then works exclusively in the error-box
formulation. MultiCal will also compute the twelve terms for use with commercial VNAs, but it

                                                  
2 In general, the standards are different lengths of waveguides, but for the purpose of this paper, we will consider
only transmission-line standards. If hollow waveguides are to be used, the user enters a negative number for the real

part of the effective relative permittivity.
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determines the 12-term model out of its error-box model following previously described
equivalencies [4].
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Figure 1 Two error models for two-port vector network analyzers: (a) 8-term model; (b) 12-term model with
separate forward and reverse subcircuits.

Second, instead of applying numerical matrix solutions, the Multiline method and the MultiCal
software analytically solve the eigenvalues of the measured cascade parameters (the ABCD

version of the raw S-parameters). There are two eigenvalues for two-port systems, and MultiCal
makes the best assignment of these roots to the transmission terms by testing for robustness in
high-loss or low-loss regimes. This has not been described in detail before.

Next, we must realize that the Multiline formulation works on S-parameter correction relative to
the characteristic impedance Z0 of the transmission-line standards (the line standards are defined
as presenting a perfect match as the calibration reference plane). This means it works through the
propagation-constant and correction coefficient problems without having to know the Z0 of the
standards. If we stopped there, the method would produce corrected S-parameters that are
defined only for waveguides like the standards themselves. Once Z0 of the standards is known,



4

MultiCal can transform the correction coefficients to any desired reference impedance, such as
Zref = 50 + j0 Ω.

Lastly, the Multiline method uses the available line standards and length differences to give
better results than just averaging a number of repeated TRL calibrations. The Multiline method

applies the Gauss–Markov theorem to form a “best” linear unbiased estimator (BLUE) for the
propagation-constant and the error-box parameters. MultiCal ensures that the estimator will not
encounter a nonsingular matrix by identifying one line standard as the common line at each
frequency point, and forming line pairs with this common standard. The other length differences
that are available are not used, only this select set. The following sections provide further
explanation.

Computation of the Propagation-constant

The method requires an accurate determination of the propagation-constant γ of the transmission-

line standards in order to compute error-box coefficients and to then translate the measurement
reference plane, at the user’s request. By finding γ first, MultiCal demonstrates a robust method

of characterizing transmission-lines without the need for a full VNA calibration. Conceptually,
we prefer to isolate the computation of γ in the MultiCal code and to deal with it first. The

computation follows seven steps:

1. Measure or import uncorrected S-parameters for available transmission-line standards.
2. Apply switch-term correction to uncorrected S-parameters if not previously accounted for by

a first-tier VNA calibration.
3. Compute an estimate of the propagation-constant γest, based on user-supplied transmission-

line parameters.
4. With γest, identify a common transmission-line to use in forming the line pairs.

5. Analytically solve the eigenvalues that will give actual e±γ∆l values for select line pairs.

6. Determine correct eigenvalue to e±γ∆l assignment using multiple selection criteria for both

low- and high-loss transmission-line standards.
7. Compute a best estimate of γ and the equivalent representation of effective permittivity εeff.

We provide descriptions for each.

1. Measure uncorrected (raw) S-parameter data for available transmission-line standards.

MultiCal acquires two-port S-parameters from commercial vector network analyzers or from
data files. In both cases, it can accept totally uncorrected data and perform a first-tier calibration,
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or it can receive data partially corrected for switch terms and perform a second-tier calibration.
With the exception of switch term corrections (Step 2, below), the propagation-constant
calculation is performed in the same way for both cases.

The user initially specifies multiple transmission-line standards with a physical length li for each,

a THRU standard and its physical length3, a REFLECT standard with its type (open or short),
and the location of the reflection plane relative to the connector plane (the probe pads for on-
wafer connections). Though the REFLECT standard is not used in computing the propagation-
constant, we need to compute the S-parameter correction coefficients; uncorrected data must be
acquired for all standards in order for MultiCal to proceed with the computation.

Commonly, MultiCal works with frequency-swept data. The user defines a frequency sweep or
frequency list in the VNA (or data file) and MultiCal acquires a matrix of measured S-parameters
for each frequency point4. It completes this for each standard i specified in a user-supplied list.
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21 22

(1)

Here Si is the matrix of measured (or imported) two-port S-parameters for standard i at any
frequency point. MultiCal saves all these data in one three-dimensional array (2 x 2 x number of
frequencies).

2. Apply switch-term correction to uncorrected S-parameters, if necessary.

If switch-term correction is required (1st-Tier Calibration Mode) and MultiCal is acquiring data

from a four-coupler VNA (Fig. 2), MultiCal measures the switch terms using the user parameters
and then corrects the measurements of all standards.

Presently, there are two common commercial VNA architectures, each distinguished by the
number and location of directional couplers and digitizers, as shown in Fig. 2. In both of the
cases, only three of the four wave-variables (a1

M, b1
M, and b2

M; or a2
M, b2

M, and b1
M) are measured

(or used) at a time. When the source is switched from supplying a stimulus to Port 1 for forward
measurements to supplying a stimulus at Port 2 for reverse measurements, a terminating load

                                                  
3 MultiCal does not provide any assistance in choosing optimal line lengths. The choice of lengths should ensure that

there is at least one line pair that gives a transmission coefficient phase difference other than 0° or 180° (or ideally,
values that fall within 20° of these ill-conditioned points) at all frequencies of interest.
4 The point spacing in the frequency list does not need to be uniform, although it seems to work best if the list is
monotonically increasing in frequency, since MultiCal will revise the estimated effective permittivity value at a

given frequency point, based on its estimate of the propagation-constant for the preceding frequency point.
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(nominally 50 Ω) is switched from Port 2 to Port 1, respectively. Without measurements of all
four wave-variables, there are in effect two different instrument states, and consequently switch-
terms for the 8-term model, or error-box formulation [4,5]. These switch terms are naturally
accounted for in forward and reverse subcircuits of the 12-term formulation and can be directly
related to the switch-term corrected error-box formulation.

b) 3-Coupler, 3-Digitizer, Two-Port VNA
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Figure 2 Two-port VNA architectures: (a) VNA with four couplers but using only three digitizers simultaneously;

(b) VNA with only three couplers and digitizers. The latter cannot measure the switch terms with MultiCal alone.

The user tells MultiCal whether the data to be used are uncorrected (1st-Tier Calibration Mode)
or whether the data came from a VNA that already applied a correction (2nd-Tier Calibration
Mode). In the 2nd-Tier Mode, MultiCal considers the switch terms to be accounted for and does
nothing further. This is the only valid MultiCal mode when using a three-coupler VNA. In the

1st-Tier Mode, MultiCal will either make a measurement of the switch terms of the VNA, or
look for a special data file (named “GTHRU”) that contains the switch-term information.

When controlling a VNA, MultiCal measures the uncorrected forward and reverse switch terms
ΓF and ΓR by defining user parameters in the VNA and measuring these at the same time the user

connects and measures the THRU standard:
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, (3)

where ajm and bim are the uncorrected measured wave-variables. These are measured at each
frequency in the list.

If instead, MultiCal is importing data from a file, it looks for the same two switch terms, using
the data in the position normally reserved for S11 as ΓR, and the data in the position normally

reserved for S22 as ΓF.

Now, if the network analyzer were a true four-coupler, four-digitizer type, such as the recently
described large-signal network analyzers [6], it would simultaneously digitize and record a1m,
b1m, a2m, and b2m. The S-parameters would then be uniquely defined for any termination placed
beyond the couplers; in this case switch terms would not be an issue in formulating the model.

The user can also specify whether or not MultiCal should include an isolation correction for
high-attenuation applications. These terms are the isolation coefficients of the 12-term model.
Since MultiCal is working strictly with an 8-term model (that is, no cross-talk terms), it corrects
the measured data as shown below and performs its computations in the 8-term formalism. It
corrects the switch-terms first:

Γ
Γ

IC F
F

F
thruIso S, /

=
−1 21

 and (4)

Γ
Γ

IC R
R

R
thruIso S, /

=
−1 12

, (5)

where IsoF and IsoR are the uncorrected transmission parameters measured in the forward and
reverse configuration when the ports are terminated with a nominally impedance-matched load.

MultiCal then isolation-corrects the transmission parameters of each standard:

S S IsoIC
i i

R,12 12= −  and (6)

S S IsoIC
i i

F,21 21= − . (7)
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Finally, switch term-correction is applied to the resulting S-parameters of each standard:
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where

D S Si
IC
i

IC
i

IC F IC R= −1 12 21, , , ,Γ Γ .

If isolation is omitted, only the switch-term correction is applied. With the data in this form,
MultiCal uses the switch-term-corrected S-parameters to compute the propagation-constant and
correction coefficients.

3. Compute estimate of propagation-constant γest

MultiCal requires users to specify an accurate estimate for εr,eff , the effective complex relative

permittivity of their transmission-line standards. Users can acquire this estimate with a field
simulation of the line, which in certain cases may be a static field solution. For on-wafer
structures, the conformal mapping approximations of Ref. [7] are often useful. The MultiCal user
gets to enter only one value for the real part ε′r,eff  without specifying a frequency. For lossy lines,

the user may enter an estimate of the imaginary part of the effective relative permittivity ε′′r,eff at

1 GHz, entering negative numbers to indicate loss. Using these values, MultiCal computes an
estimated propagation-constant for the first frequency point in the list:

γ
π

ε
ε

est r est
r estj

f

c
j

f
= ′ +

′′2
100 109,

,

/
. (9)

Here, γest is represented in units per 10-2 m, c is the speed of light in vacuum, and the frequency

dependence of ε′′r,eff  is approximated using a 1/f scaling, normalized to the user entry point.

Equation (9) gets applied for only the first frequency point in the list. MultiCal reassigns γest at

subsequent frequency points, using its most recent solution of γ to estimate the next point:

γ γ γest f f j f
f

f+
+( ) = ( ){ } + ( ){ }1

1Re Im , (10)

where f+1 indicates the next frequency in the list.

4. Identify the optimal common line to use in forming line-length differences.
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With the array of γest values, MutliCal identifies a common line to use at each frequency point.

The common line is the one used to form the line-length differences in subsequent calculations
and MultiCal may change this common line at each frequency point, as shown below.

This is a key point that authors of other Multiline software need to keep in mind. MultiCal does
not simply use the THRU standard as the common line at all frequencies. Instead, it chooses a
common line based on the resulting phase differences at each frequency point f. MutliCal follows
this procedure:

a) Start by taking the first standard L1 (possibly the THRU standard) as the common line and
estimate the effective phase differences φeff between it and all the other line standards Lj,

based on γest and the length differences ∆l = lLj - lL1:

φ
γ γ

eff

e eest est

=
−

−

− +

sin 1

2

∆ ∆l l

, (11)

where this definition of φeff is used since it is more robust for both low- and high-loss

transmission-lines and takes values between 0 and 90°. MultiCal sets φeff to 0 if the

argument of the arcsine happens to exceed 1 due to measurement noise.

b) Record the minimum φeff in the set when using L1 as the common line at this frequency. This

represents the line pair that would give the largest calibration error at this frequency.

Repeat steps a) and b), using in turn all other lines as the common line; from L2 to LN.

c) Among the N sets of minimum φeff data, find the maximum value and note which line was

used as the common line for this test. Based on the estimated phase difference criterion, this
would be the common line .

d) At this frequency f, record the index of this common line in an array.

5. Analytically solve the eigenvalues that will give actual e±γ∆l values for selected line pairs.

The measurements Si can also be conveniently represented in a cascade matrix Mi that transforms
the wave variables at Port 2 to the wave variables at Port 1.  For a two-port device, the
relationship between M and S is

M =
−( )

−











1

121

12 21 11 22 11

22S

S S S S S

S
, where M is defined in 

b
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M
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
M . (12)
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In actuality, the Multiline method uses switch-term-corrected measurements from pairs of
transmission-lines in order to find γ. The Multiline Method paper [1] shows that for any given

pair of transmission-line measurements, the eigenvalues of the cascade matrix Mij reduce to those
of the line pair matrix Lij in the absence of noise. Here Mij and Lij are defined as

M M Mij j i≡ ( )−1
 and (13)

L L Lij j i
ij

ij

E

E
e

e

j i

j i
≡ ( ) ≡









 =













−
− −( )

+ −( )
1 1

2

0

0
0

0

γ

γ

l l

l l
. (14)

Solving for the eigenvalues Mij then provides an estimate for the propagation-constant of the
transmission-line standards. MultiCal uses an analytic expression for the eigenvalues of Mij:

λ λ1 2 11 22 11 22

2

12 21

1
2

4ij ij ij ij ij ij ij ijM M M M M M, = +( ) ± −( ) +




, (15)

where the elements Mmn are given in Eqn. (12), taking as the input S data the raw switch-term-
corrected S-parameter measurements of Eqn. (8).

At each frequency, these two eigenvalues are computed for the N-1 pairs (N is the number of

transmission-line standards, including the THRU).

6. Determine correct eigenvalues to e±γ∆l assignment.

Equation (15) is not yet the end result. We now have two eigenvalues that must be properly

assigned to Eij
1 and Eij

2. At this point, the equations have been developed for transmission-line
standards that are identical in every way except for their length, and without consideration of
measurement noise (the Multiline Method actually treats the noise as a small perturbation).
However, the measurement data used in Eqn. (15) include both electrical noise and contact
repeatability noise, plus the effects of small variations in the line standards. The assignment of
eigenvalues to appropriate transmission terms may not be directly obvious when attenuation or
phase differences between any two standards are small compared to the measurement noise.

To carry out the assignment, MultiCal makes an initial guess: Eij
1 = λij

1 and Eij
2 = λij

2. It then

computes a propagation-constant from the E’s and compares that to the estimated γest defined in

Eqns. (9-10). A second guess, Eij
1 = λij

2 and Eij
2 = λij

1 provides another difference between the

computed propagation-constant and γest. The smaller difference case is generally taken as the
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correct answer, though MultiCal applies the following arbitrary tests of significance, especially
for high-loss cases, in making a good assignment:

a) Make starting assignment Eij
1 = λij

1 and Eij
2 = λij

2.

b) Form average value

E

E
E

a

ij
ij

=
+1

2

1

2
. (16)

One possibility is that Ea ≈ (e-γ∆l + e-(+γ∆l))/2  ≈ e-γ∆l
.

c) Compute γa∆l from average Ea:

γ πa aE j P∆l = − +ln( ) 2 , (17)

where the number of periods P is needed to estimate the total delay; that is,

P
Eest a=

− −Im{ } Im{ ln( )}γ
π

∆l

2
, rounded to the nearest integer. (18)

d) Compute the relative difference between γa∆l and γest∆l:

Da
a est

est
1 =

−γ γ

γ

∆ ∆

∆

l l

l
. (19)

e) Form average value

E

E
E

b

ij
ij

=
+2

1

1

2
. (20)

The complementary possibility to step b) is that Eb ≈ (e+γ∆l + e-(-γ∆l))/2  ≈ e+γ∆l
.

f) Compute the relative difference between γb∆l and -γest∆l, following Eqns. (17-19):

Db
b est

est
1 =

+

−

γ γ

γ

∆ ∆

∆

l l

l
. (21)

If the sign of γb∆l changed from γa∆l, as might be expected, then Da1 ≈ Db1.

g) Now make the other assignment Eij
1 = λij

2 and Eij
2 = λij

1.

h) Repeat steps b) through f), computing a second set of relative differences, Da2 and Db2 for the
second assignment.
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i) If Da1 + Db1 < 0.1(Da2 + Db2) , then keep first assignment (much closer fit on first one).
j) If Da2 + Db2 < 0.1(Da1 + Db1) , then keep second assignment (much closer fit on second one).
k) If neither case i) nor case j), then check sign of loss term for noise between assignment one

and two:
If SIGN(Re{γa1}) ≠   SIGN(Re{γb1}), then there’s an inconsistency, so make best

assignment based on D’s alone:
Eij

1 = λij
1 and Eij

2 = λij
2 if Da1 + Db1 < Da2 + Db2 and

Eij
1 = λij

2 and Eij
2 = λij

1 if Da1 + Db1 > Da2 + Db2.

l) If neither case i) nor case j), but there is consistency in the signs of the loss terms, make
assignment based on attenuation constant (higher-loss case):

If |Re{γa1 - γb1}| < 0.1|Re{γa2 + γb2}|, and

|Re{γa1}/Im{γa1}| > 0.001 (lossy line case), and

Re{γa1}>0 (a check that it’s actually lossy), then assign

Eij
1 = λij

1 and Eij
2 = λij

2 if Da1 + Db1 < 0.2 and

Eij
1 = λij

2 and Eij
2 = λij

1 if Da2 + Db2 < 0.2.

m) If nothing else works make best assignment based on D’s alone:
 Eij

1 = λij
1 and Eij

2 = λij
2 if Da1 + Db1 < Da2 + Db2 and

Eij
1 = λij

2 and Eij
2 = λij

1, if Da1 + Db1 > Da2 + Db2.
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Figure 3 Example of propagation-constant data computed by MultiCal for thin-film gold coplanar waveguide
standards on alumina. The plot shows the phase part of the propagation-constant as the effective relative

permittivity, giving the individual computations of four different line pairs, plus MultiCal’s estimate (average).

This assignment is made at each frequency point, for each line pair formed with the pre-selected
common line. Multiline may make the wrong choice in the presence of noise. Figure 3 displays



13

the phase constant part of γ as the real part of the effective relative permittivity ε′r,eff (γ/2πf =

jεr,eff
1/2) for line pairs in a set of on-wafer transmission-line standards. For some of the small

length differences, we see jumps in the data at certain frequencies due in part to the noise in the
assignment process.  As this step gives the “observed” value of γ∆l for use below, the method

treats assignment errors as a random noise process. The effect of the estimation process used in
the next step is to place more weight on the observations from the larger length differences.

7. Compute best estimate of γ and the equivalent representation of effective permittivity εeff.

Now, MultiCal actually computes the best estimate from among the line pairs using a linear

least-squares estimator.

After the eigenvalue assignments are made above, MultiCal computes an average γ∆l value from

an average of Eij
1 and 1/Eij

2, storing the data for each line pair at a given frequency point f.
MultiCal forms a vector G of N-1 observations of γ∆l. From the user’s line length entries,

MultiCal also has a matching vector L of N-1 length differences. A simple linear equation relates
these with the desired propagation-constant parameter:

G L e= +γ r , (22)

where er is the random measurement noise.

In such a system with N-1 linearly independent measurements, we can estimate the parameter γ

using a weighted-least-squares method [8]. Minimizing the sum of |Gi - γLi|
2 over all i, gives a

general formula for an estimate of the propagation-constant γ:

γ =
L WG
L WL

H

H (23)

where LH designates the Hermitian transpose of L for generality, and W is a symmetric, positive-
definite weighting matrix. This process can be thought of, in part, as multiplying observations of
(γ∆l)i by the associated line length difference plus a selected weight, then summing over all i and

dividing by a weighted sum of the length differences squared.

Gauss, and much later Markov, found the optimal weighting matrix to be the inverse of the
measurement noise covariance matrix, or V-1. This gives a best, linear, unbiased estimator
(BLUE) like the one used in the Multiline Method paper [1]:

γ =
−

−

L V G
L V L

H

H

1

1 . (24)
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In order to ensure stochastically independent observations (γ∆l)i, which will be required below to

analytically invert a covariance matrix, MultiCal identifies a common line and forms only one set
of N-1 line pairs.

The elements of the measurement noise covariance matrix are defined generally as

V = <er
*er

T>, (25)

where er
* denotes the complex conjugate, er

T denotes the transpose, and < > denotes the
expectation value. If we simply considered the measurement noise values of the observations er

to be mutually independent and identically distributed with zero mean and a variance σ2,we

would obtain the expectation value <er> = 0, and V = <er
*er

T> = σ2I. However, the Multiline

method considers the noise differently. It finds er from the difference of two line measurements,
since the observations in G can be thought of as the ratio of two line measurements. We can

express er in terms of k, the noise in  individual line measurements:

ei = kcom + kI, (26)

where the k’s are the composite measurement noise for the measurement of the common line and
the ith line in the pair, respectively. Considering a two-observation example for clarity, we find

e er r
com com com com com com com com

com com com com com com com com

k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k
*

* * * * * * * *

* * * * * * * *
T =

+ + +( ) + + +( )
+ + +( ) + + +( )













1 1 1 1 1 2 2 1

2 1 1 2 2 2 2 2

. (27)

Assuming no correlation between the mixed terms, and taking the expectation values of each

element, our 2x2 V matrix becomes

V =










2

2

2 2

2 2

σ σ

σ σ
k k

k k

, (28)

where σk
2 is the variance of the composite noise in the individual line measurements. As the

multiline paper shows, the elements of the inverted matrix V-1 are given directly by

V
Nmn mn

k

−( ) = −





1
2

1 1
δ

σ
, (29)

where δmn is the Kronecker delta, and N still represents the number of line standards; that is, one

more than the number of observations. For our example,
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V − =
− −

− −

















1
2

1 1
1 1

1
1

1σ k

N N

N N

. (30)

Since σk
2 shows up in both the denominator and numerator of Eqn. (23), MultiCal does not

attempt to determine it in order to solve Eqn. (23); instead it forms σk
2V-1 just knowing N.

Remember that the ordering of the lines in Step 4 above ensures that MultiCal is not dealing with
any other correlation. It is using a minimum set of measurements for N-1 line pairs, so it is not
concerned about a nonsingular covariance matrix; consequently the analytic inversion is used
directly.

With its computation of γ, MultiCal computes the attenuation constant α, normalized phase

constant βc/ω, and effective relative permittivity εr,eff. These are the data it displays and saves.

The relationships between them are given here:

α γ= { }20 10Log e( )Re , (31)

β
γ

ω
= 








Im
/100c

, and (32)

ε
γ

ωr eff c, /
= −

( )








100

2

, (33)

where e is used here as the base of the natural logarithm and ω = 2πf.

Correction Coefficients

After considering the propagation-constant, we can see how MultiCal determines the correction
coefficients of the 8-term model.

In the 8-term model, or error-box formalism, the measured cascade matrix of a standard Mi is
defined in terms of the actual cascade matrix Ti of a device through two cascade matrices:

M XT Yi i= , (34)

where the overbar denotes that Y is the “right-to-left” cascade matrix. The elements of the error
boxes can be related to the coefficients in the 8-term model (Fig. 1):
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X ≡








 =

− −( )
−









R

A B

C e

e e e e e

e1
1 1

1 10

00 11 01 10 00

11
1

1

1
, and (35)

Y ≡








 =

− −( ) −







R

A C

B e

e e e e e

e2
2 2

2 32

22 33 32 23 22

33
1

1

1
. (36)

MultiCal estimates first the two off-axis terms, B and C for both ports, then the A terms and R
coefficients independently. Here, one must solve MijX = XLij for the Port 1 error box and, by
simply exchanging the port indeces on the elements of the measured parameters in Mij, solves an
equation of the same form to get Y-overbar.

In general, TRL formulations are eigenvalue problems with the columns of X as the eigenvectors
of Mij and the diagonal elements of Lij as the eigenvalues. The Multiline Method takes advantage
of this and normalizes by A the elements in the first column of the X. It then finds B1 and (C/A)1

by forming a set of N-1 observations out of the Mij matrices for each line pair, using the
previously identified common line at each frequency point.

When we solve MijX = XLij analytically, we have a common R1 factor on both sides and a
common (1/S21

jS12
i) factor in all elements of the Mij. MultiCal solves B and (C/A) without

knowing R1 and using a new matrix ττττ, where ττττ = (S21
jS12

i)Mij. This matrix is found by again

inserting the switch-term corrected S-parameter values into the analytic expressions. The
eigenvalues of ττττ are similar to Eqn. (15):

λ λ τ τ τ τ τ ττ τ1 2 11 22 11 22

2

12 21

1
2

4ij ij ij ij ij ij ij ij, = +( ) ± −( ) +




. (37)

Using Eqn. (37), we find two cases for B1 and (C/A)1 in solving MijX = XLij :

Ba
ij

ij ij1
12

1 11

=
−

τ
λ ττ

, (38)

C

A

a ij

ij ij






=
−1

21

2 22

τ
λ ττ

, and (39)

Bb
ij ij

ij1
1 22

21

=
−λ τ

τ
τ , (40)
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C

A

b ij ij

ij






=
−

1

2 11

12

λ τ
τ

τ . (41)

MultiCal now operates on each line pair at each frequency in the list. Since it again might not be
obvious which eigenvalue should be associated with which choice of root, there is a duplicity of
possibilities in Eqns. (38-41). For example, we could just as well form Eqn. (38) using λτ2

ij

instead of λτ1
ij. For each of the four possible assignments above, MultiCal compares the two

cases for B and (C/A) to estimates based on MultiCal’s γ :

B
e

est

ij

l l ijj i
=

−
+ −( )

τ

τ
γ

12

11

 and (42)

C

A eest

ij

l l ijj i







=
−

− −( )
τ

τ
γ

21

22

. (43)

The case closest to these estimates becomes the observation of B and (C/A).

MultiCal next computes the right-to-left error box for Port 2 in the same manner using Eqns. (37-
43), but exchanging the port indeces on the S-parameters used to form the ττττij. For example, in

solving for X, MultiCal uses the normal ττττ12
ij

τ12 11 11 22 21 12 11 11 22 21 12
ij i j j j j j i i i iS S S S S S S S S S= −( ) − −( ) ; (44)

in solving for Y-overbar. MultiCal then uses the port-exchanged elements

τ12 22 22 11 12 21 22 22 11 12 21
ij i j j j j j i i i iS S S S S S S S S S= −( ) − −( ). (45)

MultiCal builds arrays B1, (C/A)1, B2, and (C/A)2 out of the N-1 available observations.

MultiCal estimates values for the B and (C/A) parameters following a method similar to
Eqn. (24). Here, however, MultiCal does not use an independent variable such as line-length
difference, but uses a specific inverted covariance matrix that includes line-length difference
information in describing the measurement noise variance. The estimate for either B1 or B2 can

be written as

B B

B
B B= = ( )

−

−
−h V B

h V h
h V B

T

T
T

1

1
1 2σ , (46)
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where h is a vector with all elements hi =1, and the variance σB
2 is the sum of all the elements in

the inverted measurement noise covariance matrix VB
-1. This covariance matrix differs from the

one used to estimate γ above but is the same for both B1 and B2. Assuming that the noise in the

measurements of the individual lines are uncorrelated and that Ports 1 and 2 of the instrument are
equally noisy, the Multiline Method paper [1] develops a scaled covariance matrix VB; that is,
one where the measurement noise variance factor is not included (this factor will cancel in Eqn.
46, so it is not determined). In MultiCal, the elements of the scaled VB (neglecting the σk

2 factor)

are found in three parts: for the diagonal elements

V

e
e

e e

e e
B mn m n

l l

l l

l l

l l l l

m com

m com

m com

m com m com
,

( )

( )

( ) ( )=

− −

− −

− −

− − + −
=

+ + ( )
−

γ

γ

γ γ

γ γ

2

2

2

2

1
2

, (47)

for the upper triangle elements

V
e e e e e

e e e e
B mn m n

l l l l l l l

l l l l l l l l

m com m com com m n

m com m com n com n com
,

( ) ( ) * *

( ) ( ) ( ) ( ) *<

− − − − − − −

− − + − − − + −
=

( ) + ( )
−( ) −( )

γ γ γ γ γ

γ γ γ γ

2

, (48)

and for the lower triangle elements

V VB mn m n B nm, ,

*

>
= ( ) . (49)

Here, γ is the accurate propagation-constant estimate that MultiCal computed above, lcom is the

length of the common line identified before at the given frequency, and lm or ln are the lengths of
the other lines in the pairs.

For the first time, MultiCal uses a numerical inversion to compute VB
-1, and uses this to compute

the estimate in Eqn. (46). While we might not arrive at the ultimate minimum variance, the line
ordering procedure still provides a good estimate that is unbiased under the stated assumptions.

MultiCal estimates the C/A parameters in a similar manner using a different covariance matrix,
again scaled to remove the measurement noise variance factor:

C A C

C
C C/ = = ( )

−

−
−h V C

h V h
h V C

T

T
T

1

1
1 2σ , (50)

wherem for the diagonal elements of VC
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V

e
e e e

e e
C mn m n

l l

l l l l

l l l l

m com

m com com m

m com m com
,

( )

( )

( ) ( )=

− −

− − − −

− − + −
=

+ +
( )

−

γ

γ γ γ

γ γ

2

2 2

2

1 2

, (51)

for the upper triangle elements

V
e e e e e

e e e e
C mn m n

l l l l l l l

l l l l l l l l

m com n com com m n

m com m com n com n com
,

( ) ( ) * *

( ) ( ) ( ) ( ) *<

− − − − − − −

− − + − − − + −
=

( )
+

( )
−( ) −( )

1 1
2γ γ γ γ γ

γ γ γ γ
, (52)

and for the lower triangle elements

V VC mn m n C nm, ,

*

>
= ( ) . (53)

Users  of MultiCal may be familiar with the Normalized Standard Deviation plot the program
can supply. These data simply represent the arithmetic average (σB + σC)/2, using the terms from

Eqns. (46 & 50).

In the last steps of this section, MultiCal computes estimates for the A and R parameters. The
Multiline Method paper did not document their solution before, but they follow from earlier TRL
solutions.

To find the A’s, MultiCal computes an estimated value for the reflection coefficient of all reflect
standards. In practice, MultiCal can use multiple reflection standards to find an average A, but
for the purpose of this document, we will consider only a single REFLECT standard. The user
can select whether the reflection standard is an open or short circuit, and can specify the location

of the reflection plane relative to the connector plane (probe-tips). MultiCal can transform this
frequency-flat reflection coefficient if the reflection plane is not located where the middle of the
THRU standard would be placed; that is,

Γ Γr est refle
refl TRHU

,
/=

− −( )2 2γ l l
, (54)

where Γrefl is the reflection coefficient of the standard provided by the users, lrefl is the length

entry for the standard specified by the user (taking symmetric reflection standards), and lTHRU/2

gives the location of the calibration reference place as one half of the THRU length.
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MultiCal then determines the A’s at each frequency. It finds the product Ap=A1A2 from
measurements of the THRU and the ratio Ar = A1/A2 from measurements of the REFLECT. With
those two values, it finds the individual coefficients. In the process, Γrefl will be used only to find

the sign when taking the square root of Ap.

If we consider the THRU to be the connection of the two ports at the measurement reference
plane, we define an ideal connection with total reciprocal transmission and zero reflection.
Solving for

M XIYTHRU = (55)

gives the product of A1A2 as

A
B B B S B S S S S S

C

A
S

C

A
S

C

A

C

A
S S S S

p

THRU THRU THRU

THRU THRU THRU
= −

− − + −( )
− 





− 





+ 











−( )
1 2 1 22 2 11 11 22 21 12

1
11

2
22

1 2
11 22 21 121

 . (56)

Other solutions for the product can be found, but this one eliminates factors with potentially
small denominators. To determine Eqn. (56), four analytic expressions can be formed with Eqn.
(55) relating the elements in the cascade measurement matrix with the error-box coefficients.
Taking the equation with an A1A2 term and dividing by each of the other three equations isolates
a desired 1/A1A2 term. In order to get rid of troublesome factors such as 1/S11

THRU, certain
equations must be multiplied by a  ±(S11

THRUS22
THRU) factor before summing the three remaining

equations and solving for Ap.

To find Ar, we consider the isolated error boxes with the reflection standards connected. Taking
the reflections at each port to be identical (Γ1 = Γ2) and using a flow-diagram solution gives a set

of equations where

A
A

A

S B

S C A

S C A

S Br

fl

fl

fl

fl= =
−

− ( )
− ( )

−
1 1

2 2

11 1

11 1

22 2

22 21

1Γ
Γ

Re

Re

Re

Re/

/
. (57)

Here, the Smn
refl are the measurements of the reflection standard. Finding A1

2 = ApAr leaves a sign
ambiguity. To find the sign of A1, MultiCal subtracts two normalized vectors, then tests the
magnitude of the difference vector:

Γ

Γ
Γ
Γ

r est

r est

trial

trial

,

,

?

− > 2 , (58)

where Γtrial is the reflection coefficient found in Port 1 solution as
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Γtrial

fl

p r
fl

S B

A A S C A
=

−
− ( )( )

11 1

11 11

Re

Re /
. (59)

If Eqn. (58) is TRUE, Γtrial will have a component opposite to that of Γr,est and

A A Ap r1 = − ; (60)

otherwise

A A Ap r1 = . (61)

The remaining assignment is simply A2 = A1/Ar.

In our formulation, there are two sets of  ABCR parameters, one for each port, but the strict 8-
term model has only seven independent coefficients, with one common prefactor equivalent to
our R1R2. Following much the same procedure in finding the Ap from the measurement of the

THRU, we can find a solution of the product R1R2. Various methods of assigning the Rs have
been described [4,9] before. The MultiCal code divides the contributions for each port based on
the measured transmission parameters of a reciprocal THRU standard:

R
S

C

A
S

C

A
S

C

A

C

A
S S S S

TRHU

THRU THRU THRU
1

12

1
11

2
22

1 2
11 22 21 121

=
− 





− 





+ 











−( )
 and (62)

R
S

C

A
S

C

A
S

C

A

C

A
S S S S

TRHU

THRU THRU THRU
2

21

1
11

2
22

1 2
11 22 21 121

=
− 





− 





+ 











−( )
. (63)

From this, MultiCal has estimates of the propagation-constant γ and the 8-term VNA model as

two sets of ABCR parameters. The correction coefficients are defined for a calibration reference
plane positioned lTHRU/2 away from the connection, or probe-tip plane, and with a reference
impedance equal to the characteristic impedance of the line standards, Zref = Z0 (ideal match
conditions at the reference plane).

Reference Plane and Impedance Transformations

If the user so desires, the reference plane can be located in a position along a length of uniform
transmission-line identical to that of the transmission-line standards. MultiCal transforms the A

and the R terms to create a new set of correction coefficients that compensate for this translation:
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A Aei i
∆ ∆= −2γ l  and (64)

R R ei i
∆ ∆= −2γ l , (65)

where ∆l is the user-specified change in reference plane position (physical length of the

transmission-line).

Additionally, the user can transform Zref to another more desirable connection impedance. With
Zref and Z0 known, MultiCal can modify its coefficients. The user can supply a file that specifies
the characteristic impedance of the transmission-line standards at each frequency point in the list,
or the user can specify one transmission-line parameter C0, in units of pF/10-2 m and let MultiCal
estimate the Z0. The latter case works for lines of negligible conductance, where the line losses
are dominated by the conductor resistance. Here, MultiCal estimates Z0 as

Z
c C

r eff
0

0

≈
ε , , (66)

where εr,eff is the result of MultiCal’s propagation-constant solution and c is the speed of light.

Using either a Z0 file or Eqn. (66), we can find the two-port impedance transformation matrix.
MultiCal cascades two matrices to find new ABC parameters for both Port 1 and 2 (The A and R
inputs used here may in fact be the reference plane corrected parameters A∆ and R∆ from above):

Ti
Z i i

i i

Z

Z

Z

Z

Z Z

A B

A C A
=

( )










−

−

−
−

− −



















/ 1

1

1 1

1

1

1

2 2

2 2

Γ

Γ

Γ
Γ

Γ Γ

, (67)

where

ΓZ
ref

ref

Z Z

Z Z
=

−

+
0

0

. (68)

The elements of Zi give the new values of the ABCR parameters as

A
T

Ti
Z i

Z

i
Z= ,

,

11

22

, (69)
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B
T

Ti
Z i

Z

i
Z= ,

,

12

22

, and (70)

C

A

T

Ti

Z
i
Z

i
Z







= ,

,

21

11

. (71)

MultiCal solves the impedance transformed R’s as

R R
B C A

A

A

B C A

T

T
Z

Z

Z Z

Z

Z1 1
2 2

1

1

2 2

1 22

2 22

1
1

= −
( )







 − ( )










/

/
,

,

 and (72)

R R
B C A

A

A

B C A

T

T
Z

Z

Z Z

Z

Z2 2
1 1

2

2

1 1

2 22

1 22

1
1

= −
( )







 − ( )










/

/
,

,

. (73)

Measurement Correction

Now, we have all the required elements for the error boxes, including reference plane and
reference impedance transformations. MultiCal uses the transformed ABCR parameters to
analytically form the X-1 and Y-1-overbar correction matrices. It corrects a device-under-test
(DUT) measurement to produce the actual cascade matrix T, from which MultiCal extracts the S-
parameters:

T X M YDUT DUT= − −1 1
. (74)

If MultiCal is controlling an automated VNA, it can also form the 12 terms used in the common
VNA correction model from its 8 ABCR terms [4]. The assignments are shown here using the
definitions of Fig. 1:

e B00 1= , (75)

e
C

A
A11

1
1= −





, (76)

e e A B
C

A
A10 01 1 1

1
1= − 





, (77)

e IsoF30 = , (78)
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e
A C A

B
R

R
22

2 2

21
=

− ( )( )
−

Γ

Γ

/
, (79)

e e
A A

R B R
10 32

1 2

1 21
=

−( )Γ
, (80)

′ =e B33 2 , (81)

′ = −





e
C

A
A22

2
2 , (82)

′ ′ = − 





e e A B
C

A
A23 32 2 2

2
2 , (83)

′ =e IsoR03 , (84)

′ =
− ( )( )

−
e

A C A

B
F

F
11

1 1

11

Γ

Γ

/
, and (85)

′ ′ =
−( )

e e
A A

R B F
23 01

1 2

2 11 Γ
. (86)

The VNA can then apply its own correction to DUT measurements in real time using MultiCal’s
calculations.

Summary

We have documented here methods used in the NIST MultiCal® program that have not been
presented before. We showed how this implementation of the Multiline TRL calibration is not
simply a solution of simultaneous error correction equations, but rather an evolved set of tests
and traps, taking advantage of analytic formulations that can branch to specific solutions that are

numerically well behaved. We showed how MultiCal applies a linear-least-squares estimator in
finding an accurate estimate of the transmission-line propagation-constant, as well the 8 terms in
the error-box formulation. We hope this document will assist the authors of other Multiline TRL
algorithms, possibly serving as a launching point for new discussions of this approach.
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